Molecular and Cellular Responses to Interleukin-4 Treatment in a Rat Model of Transient Ischemia
نویسندگان
چکیده
Within hours after stroke, potentially cytotoxic pro-inflammatory mediators are elevated within the brain; thus, one potential therapeutic strategy is to reduce them and skew the brain toward an anti-inflammatory state. Because interleukin-4 (IL-4) treatment induces an anti-inflammatory, "alternative-activation" state in microglia and macrophages in vitro, we tested the hypothesis that early supplementation of the brain with IL-4 can shift it toward an anti-inflammatory state and reduce damage after transient focal ischemia. Adult male rat striata were injected with endothelin-1, with or without co-injection of IL-4. Inflammation, glial responses and damage to neurons and white matter were quantified from 1 to 7 days later. At 1 day, IL-4 treatment increased striatal expression of several anti-inflammatory markers (ARG1, CCL22, CD163, PPARγ), increased phagocytic (Iba1-positive, CD68-positive) microglia/macrophages, and increased VEGF-A-positive infiltrating neutrophils in the infarcts. At 7 days, there was evidence of sustained, propagating responses. IL-4 increased CD206, CD200R1, IL-4Rα, STAT6, PPARγ, CD11b, and TLR2 expression and increased microglia/macrophages in the infarct and astrogliosis outside the infarct. Neurodegeneration and myelin damage were not reduced, however. The sustained immune and glial responses when resolution and repair processes have begun warrant further studies of IL-4 treatment regimens and long-term outcomes.
منابع مشابه
Effect of Pentoxifylline on Ischemia- induced Brain Damage and Spatial Memory Impairment in Rat
Objective(s) The brief interruption of cerebral blood flow causes permanent brain damage and behavioral dysfunction. The hippocampus is highly vulnerable to ischemic insults, particularly the CA1 pyramidal cell layer. There is no effective pharmacological strategy for improving brain tissue damage induced by cerebral ischemia. Previous studies reported that pentoxifylline (PTX) has a neuroprot...
متن کاملReduction in ischemic brain injury following the administration of pentoxifylline after transient global ischemia/ reperfusion in a rat model
Background: It is well known that the hippocampus, the CA1 Pyramidal cells in particular, is selectively vulnerable during global cerebral ischemia. Recently, it is observed that pentoxifylline has a neuroprotective effect. This study explored the pharmacological relationship between ischemia-induced cell death of the hippocampus and the efficacy of a vasodilator agent (pentoxifylline) in the...
متن کاملPre-Ischemic Treatment of Pentoxifylline Reduces Infarct Volumes in Transient Focal Cerebral Ischemia in the Rat
Background: Pentoxifylline (PTX) is used in human for intermittent claudication and cerebral vascular disorders including cerebrovascular dementia. It also inhibits the synthesis of tumor necrosis factor-α (TNF-α), which is believed to be neurotoxic in animal models of cerebral ischemia. The objective of this study was to examine the role of PTX on ischemia/reperfusion injures in rat model of t...
متن کاملEvaluation the protective effect of aminoguanidine on cortex and striatum damage in acute phase of focal cerebral ischemia in rat
Introduction: Several studies have indicated that late treatment of aminoguanidine (AG) reduces cerebral ischemic injuries in animal models. However, the effects of early treatment of AG on cerebral ischemic damage are not well understood. This study was designed to evaluate effect of early treatment of AG on cortex and striatum injuries as well as neurological dysfunctions in transient mode...
متن کاملEffect of pentoxifylline on brain edema in a rat model of transient focal cerebral ischemia
Pervious studies have shown that pentoxifylline (PTX) has beneficial effects in reduction of stroke and brain trauma injuries in experimental animals. However, there is very little and controversial information about the effect of PTX on brain edema in cerebral ischemia. Therefore, the aim of this study was to determine the effects of different doses of PTX on brain edema and neurological m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 75 شماره
صفحات -
تاریخ انتشار 2016